Реклама на сайте 

 

 

 

 Меню:

   
Новая историческая энциклопедия 

Все статьи принадлежат сайту globpeace.ru и защищена законом об авторском праве РФ. При копировании ссылка на первоисточник и копирайты обязательны !


Домой
Указатель
Статьи
Литература
О проекте
   
 

Разное:

Сообщить нам об ошибке


Связь с нами


Спонсировать проект


Создатели


Последующие преобразования


 
 

 


  Разное: Внимательное обслуживание не просто отличительные черты этой наиболее известной гостиницы белгорода.



        Данная лекция находится уточненной разработке
   
     

Метод рядов:

Основан на учете чередования знаков у отклонений ei. Для этого поступают с.о. Нап-р для нашей задачи, рассч-й для парной регр-ии, выставим посл-ть знаков по откл-ию.

(--)(++)(--)(+++)(-)(++) n=12

Затем объед-ся инт-лы совпадающих знаков. Каждая из образ-ых послед-тей наз-ся рядов (ряд одинак знаков). В нашей задаче к=6. Кол-во одинак знакв в отдел-м ряду наз-ся длиной ряда. Если рядов сущ-но мало по отн-ию к объему выборки n, то вер-на положит а/коррел, а если их много, то возм-на отрицат а/коррел.

Для более детального анализа поступ-т с.о. Пусть n – объем выборки. n1 – кол-во положит знаков. n2 – отрицат. В нашем случае n1=7 n2=5.

При достаточно большом кол-ве наблюдений n>20, мы м посчитать мат ожидание кол-ва рядов знаков.

и дис-ию разброса этого кол-ва рядов

Тогда, если принять, что мат ожидание м оценить ч/з таблицы распред-ия кол-ва рядов, кот-ое д нах-ся в инт-ле , то при попадании в этот инт-л а/коррел остатков б отсут-ть. В противном случае, если , то у нас положит а/коррел, а если k≥ - отрицат. Для такого распред-я б построены таблицы Экхарда, в соот-ии с кот-ми м опр-ть нижнюю и верхнюю гр-цу числа К. К1<K<K2 по 2 входам +n1 и –n2.

Таблицы имеют стр-ру

Нижняя граница К1

Таблица имеет своб поля. Если попадаем в своб поле, то к1 выбираем наименьший в этой строке.

Верхняя гр-ца К2.

Выбор осущ-ся также как для К1 и знач-я берутся для своб полей также как и в 1 случае.

В отл-ии от критерия DW этот метод дает однознач ответ, причем н помнить, что метод DW не применим для регресс моделей, содерж-х в кач-ве объясн-х переем-х нек-ые лаговые объясн вел-ны. Даже если этот лаг имеет 1 пер-д. Нап-р в модели . Для таких моделей исп-ся спец n-стат-ка Дарбина, по кот-й , где  - вычис-ся из стат-ки DW. Обычно ее принимают =1-1/2DW, т.к. .

 обычно при-т равной квадрату станд-й ошибки коэф-та при лаговой переменной. В нашем примере .